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Abstract -j

One way of building more powerful theorem provers is to use techniques from symbolic
computation. The challenge problems in this paper are taken from Chapter 2 of Ramanu-
jan's Notebooks. They were selected because they are non-trivial and require the use of
symbolic computation techniques. We have developed a theorem prover based on the sym-
bolic computation system Mathematica that can prove all the challenge problems completely
automatically. The axioms and inference rules for constructing the proofs are also briefly
discussed.
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1. Introduction

One way of building more powerful theorem provers is to use techniques from symbolic
computation. So far, there has been very little research in this direction. The challenge
problems in this paper are taken from Chapter 2 of Ramanujan's Notebooks [1]. They were
selected because they are non-trivial and require the use of symbolic computation techniques.
The preface to Chapter 2 describes the problems as being "fairly elementary", but states
that "several of the formulas are very intriguing and evince Ranianujan's ingenuity and
cleverness." We suspect that several of the problems would prove quite challenging for
many mathematics graduate students even with the help of a symbolic computation system.

We have developed a theorem prover based on the symbolic computation system Nlat lieniat -
ica [8] that can prove all the challenge prol)lems COml)letelv automaticallv. This t lieorem
prover uses many of the same techniques that we incorp)orated in an earlier tI Ieoremij prover
called Analytica [2, 3]. We plan to describe the theorem prover in greater detail in a forth-
coming paper.

Although decision procedures like Gosper's algorithm [4] can prove some identities involving
summations, we have not found a decision procedure that can handle the prol)hems proposed
here. Moreover, decision procedures only give the finial result without intermediate steps.
Our theorem prover produces readable proofs in which each intermediate step is ,just itied bY
an axiom or a rule of inference thatl cani be checked 1)v the user. This ,iisitailil gives grealer
insight into why tihe theorem is true.

2. Axioms that are used in proving the theorems

In addition to the simplification rules that are provided by the symbolic computation system.
the following axioms are also needed for proving the theorems. All of these axioms are
simple identities about summations. However, no symbolic computation svystenm. including
Mathematica, implements these identities so that they can be applied in both (irections.
In order to use these axioms effectively, a theorem prover (like the one we have dlevelope}d)
must be constructed so that cycles are avoided and termination is giiaranteed.

1. E f(k) E'Z=1 f(k) k=1 f(k) Accesion For

2. Z-n1 f = - = f(k) NTIS CRA&MDTIC 
TAB

:1. J>`=21(f(k) + g(k)) = z.= f(k) + - Unannounced 0
Justification ..................

4. =, cf(k) = cZk=. f(k)

5. • n+ IEn=, By ........................... -..
_ .,=l f(k) = k f(k) + f((n + I) DistributionfI

6. _k= (-l)kf(k) - 2k=I f(2k) - '=t f(2k - I) Availability Codes

n n = f Avail and Ior
7. k= f(k) = _L k~of(nk Dist Special

8. =I f (k + c) =_k=,+ I f (k) A .[



3. List of problems

The list of challenge problems is given below. All of these problems can be proved auto-

matically by the theorem proving system we have developed. This system uses the rules for

summation given in the previous section and is similar to another theorem prover that we

have built called Analytica [2, 3].

Ramanujan used two abbreviations in stating the theorems. We will use these abbreviations

as well.

n

) - (k .r) + A'3.3
k=1

3.1. Problems involving summation of rational functions

1. k=l n+k 2n+l +(2,n)
2. F'=, n- -;(2, n)

: 23 +1 = I (:D . n)k=1 n-.k

n= 1z • ) +(F_ n - • • .)
4. (- kI "+(- k=O 2n+2k+l

4n+ (z- 1)'+' + 1 :2n (Ik~l = t(4. n

6. D(6, n) = (F 4,=l ) + ( o 2..+¼+)

7. 2 4(4, n) =D (2,2n) + t+ I(" 2 (4 n+l1) (4 n+2)

S. 0(4. n) = _ - ,) + 2n

3 2

9. 2 0(6, n) + (D = 0(3, n) + 0(2, 3 n) + (6,+l)(tn+2)(6,+3)

10 k= r + 2 (2-k= (r - k) A,+l _.)) +,+2 (3. A o)

where A0 = 1. An+I = 3An + 1.



3.2. Problems involving infinite summations

Given that lim--,!(.= .- lInn) = 7, where -y is the Euler constant, the following identities
can also be proved.

1. 4ý(2, oo) = 2 In(2)

2. 4'(3, •o) = In(3)

3. (ID(4, oc) =32 In(2)

2
4. (I,(6, o) = .'R(3__)_ + .__n__-(__

5. Z =1 (2(2k-t)):'-2(2k-I) - -,

6. EO 2 (- 2 k = In(2) - 1
. k=• (2k)3-2 k-

7 _0 -I _ In(3) __In(2)
k. Z =I (3(2k-1))3 -3(2k-1) - 4 - 3

2(_,)k - 4 In(2)- I8. ''=,I (3k)3_.'3k -- i

3.3. Problems about the arctan function

The equations in this section can be proved using the standard trigononmetric i(entitiies for
the arctan function. These identities are not provided by Mathematica and may I)e treated"
as axioms.

1. /-•'•+ arctan( -$•) = 7 + (E-= arctan(( 3 k2 +•k 2 l)))nk'-nk 41k (30+2)(90-1

2. 2 (•,-,' arctan(--) = arctan(-n+)+( n= arctan( k+ 2 k2 +i)±+2 (z= arctan( .+

3. (Z"~ artn(•$)) +(zF= artai 2 /)k~k= i n~ + (k~ a0ctan( _kk+2k- k) I (k2- +3)n ls4k2

4. (F -= (~ arctan(2 .r)

k=5 arctan( + arctan(I• k= 2 n+2 k+i

6. + (F'=,arrcn( 9=• j) ( -,r(( 4,k1 )
4 kl 31204+220k-1 ))+(k12804+80k+1

4. E r-o arctan ((• 2•2 ) arctan(, + + 2r

k=0 (n+Tk~(+k')7n+r

.5. F=o arctan(,.j•,...,) = arctan(7 )

6. F_' , arctan ( -• 2 arctan ( 2-•!-.,+ 1_

7.( , I (:• _ (- )k+• art n 2
k= ~~ artnFýk) = arctan(,,,)+

8F_,• arta arctan( I--
8 k=• rtn • 2n+1

9. _', 1 arctan(L) =

k= kJ



10 . E k° larcta n ( l- -

11. F, I (- 1 )k+k arctan(Q4) -

12. E', arctan((1)) --
k = ~ ~(1 + V 2-k)

13. E'_ arctan( s- ) =(2k-1+V-5') 2

14. _7=oarctan( 2  )2 ) = ,

4. A sample proof generated by our system

In this section, the proof for identity I in Subsection 3.3 is presented to illustrate how owr

prover works. In the proofs of the identities in this and the next sections, some elementary
properties of the harmonic numbers Hn = _' I as well as the properties of summations
given in Section 2 are used. All of the simplification steps involving summation and the
harmonic numbers are implemented directly by our theorem prover. None can be done bY
Mathematica alone. We have been extremely careful to use only very general rules.

Theorem :
(4F1+1 (-)k + 2n (= (. +l))

k 2~ t.~

Proof : left hand side: \4n+1 (-lk+1k- k -- 1 2 -n (- _I):k+l[)\

simplify
i n (-0 l+4n 1)k

change summation with alternating sign terms to a sum of two summations

-1: •-2 E + - - I+ 2k+ E - +2k.
k=1 &= k= k=l

use harmonic number notation

1 1 1 t 1+2n 1l

4 Hn2 - 2n + _EI+2k+ E I+2kkk--I k=1

rewrite summation to standard ranges

-I+2(I+2n) 4  --2H1 + E I +
-I + 1;2-)4 1 +n ~ l 2 k ( 1: -+2k)k=1\k=1

simplify

H 1 1 11 + Y1 +_ (2n4

I+4n 4 n2 2E- I+2k F 2
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change index of summations
ý+n - •+k•n

n 1n + 4 E 1 : 1

1+4n 4 H2 4 =k 2=

use harmonic number notation

I+ -H_ - -1Hn - •Hn + •H_+ 2 ,n
41+4 4- 4- 2 - 2

simplify harmonic numbers

1 1 1 1 11+4n - - H1 - H2n + 1 (-H, + 2 H,,,) + -(-H, + 2 H4 n)
I+4n 4 2 4 - 2

simplify

1 + 4 n 2 -

right hand side:
(P(4, n)

rewrite rational expressions

1+2 + i k~t "~
k=1 k=1 k I

simplify -2 1) +
k= - k=t -+4k 1+4k

use harmonic number notation

1 Hn +

2 + 14

change index of summations

I-- ¼+ , 1

use harmonic number notation

-n H,'(-4 + H+f)

4 4 +f 2 4  4

sim plify 1 1 I
-H¼+ - 1f. + -H14+'

simplify harmonic numbers

I H - I H,+ + - , -2If.,,,+'Il14n
4_+- 2 4 4+4 ¼,

sim plify 1 H

I+4n 2n -2H 2 n+H4n

both side are same LI



5. Outline of a more complicated proof

This section contains part of the proof of identity 10 in Subsection 3. A. The proof has

twenty steps, some of which are quite complicated. However, the time required to complete

the proof is only about two minutes.

Theorem :
A = r+2 r - k) ):k_ + 2r j((3, --I)

k=n+l k=1 (j=Ak -,+t (3j) 3 j

Proof :
left hand side: A,

k=nz+lk

use harmonic number notation
-H, + HA,

right hand side:

"+2 (-Ak-,+( ) +j

simplify

r+2r ( + 27 +2k J+27 -2 (: 3 -. +27ji)
\k~~l kmlj=l+A-I+k k j = 1+.-I- t+k-

rewrite rational expressions

S-1+3k +2 1+3k)
k=1 k=1 k=1

+2r r 1+ A r

k=lj=l+A-,+& k=1 j=l+A-+k k-=Ij=l -t+, . )

k=1 \+4A- A-+h = I= / + A -I+k= +.-,

* . . (7steps)

r-.,rH+ +3i j l-,j
j=i \j=l J=I \j=1

\- = 14 ) - r )3) + r )+ l- ) -I" ) _2)I ~ +3 1 1=:j -1 +-3k i ~T -

-2 2 r r 2

3. ('Vn - HA. + (HA)) + :1 r H - Ha.. + (E (Aa)) + 3 k/ A.,
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-2 ((rHA,)+ ( kHAk)) + ( i+3 + r ( • i- -

k=1 k__j_ 1++jl + 1 - + (i

nr d e i ndices 
k

-1+3j1 -1+3jH I +H 3 HiiI +3

sj=p jli1 k=range kosmai

11:3 E 1+3j El+3j E Y1I + +3A

6. Rea(6 stpes)

I+ fnill + 1I:3,1 + IIlA • -- Ia • - l~ I.,÷

k=1 ~

increase or decrease indices

o + 3nn H + H3to + Hch - HAa t- E HAk + It
k=1 \k=2

simplify range of smmnation

1 3 H,, + I[:,,, " 1 t+3", + 11 .ir

ose harmonic nuvber notation

both sides are the same []

6. Related Work

There has been relatively little work on using symbolic comliutation techniques in autoaniqueC
theorem proving besides our own research on Analytica. [2, :1]. SuplpeS and Takahashi [61
have combined a resolution theorem prover with theIvru' systenm, but their p~rov'er is
only able to check very small steps and does not, appear to hia.\'€ Ibeen ableh to handhe \'er,rx"
complicated proofs. London and Musser [51 have also expecriment~ed with1 thIle lii.e of ReII'•(Vt
for program verification, but did not consider theoremns from other are'as of' inathvintiCs or*
computer science. Bundy [7] has investigated the use of induction for finlding closed fornis for

sumatins.He is able to handle some very complicated examples. Htowever. his tecchniques

are not applicable to the summations in this paper since they do not have closed forms.
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